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Abstract Given a permutation group G acting on a nonempty finite set X (|X | = n),
let Z(G; z1, z2, . . . , zn) denote the Pólya’s cycle indicator of G, and Gx the stabilizer
of an element x ∈ X . We derive certain differential relationships for cycle indicators
and, in particular, prove (Proposition 5) that if G is transitive on X , then for any x ∈ X

z1
∂

∂z1
Z(G; z1, z2, . . . , zn) = Z(Gx ; z1, z2, . . . , zn).

.
Keywords Polya’s cycle indicator · Orbit · Transitive group · Stabilizer ·
Differentiation

1 Preliminaries

The famous cycle index, or cycle indicator [1–3], and its generalizations [4–6] have
many applications in mathematics and other areas [1–8]. This continues to give impe-
tus to new studies of its analytical properties. Herein, we derive some differential
relationships between the cycle indicator of a transitive permutation group and the
cycle indicator of the stabilizer of a point. For this purpose, we need to introduce some
notation.

Let X (|X | = n) be a nonempty finite set and G be a permutation group acting
on X (G ∼= AutX). Further, let Z(G; z1, z2, . . . , zn) denote the cycle indicator of G,
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and G\\X the set of orbits induced by G on X . Also, Gx denotes the stabilizer of an
element x ∈ X (i. e., gx = x , ∀g ∈ Gx ), and Xg stands for the set of elements fixed
by a permutation g ∈ G.

Recall that Pólya’s cycle index is defined as follows [1–3]:

Z(G; z1, z2, . . . , zn) = 1

|G|
∑

g∈G

∏

i
∣∣|G|

zαi (g)
i , (1)

where |G| is the cardinality of a group G; zi ’s are weight-indeterminates; αi (g) is the
number of orbits of length i induced by a permutation g ∈ G; and the sum runs over
all elements of G, while the product is taken over all divisors i of |G|.

Seeking to keep to a concise treatment of the subject, we cite herein just less-
common but useful properties of the cycle index. The first one is from Exercise 2.1.1
on p. 59 in [3], viz.:

Proposition 1 Let G be a permutation group acting transitively on a nonempty finite
set X (|X | = n). Then

|Gx\\X | = 1

|G|
∑

g∈G

|Xg|2. (2)

The cycle indicator Z(G; z1, z2, . . . , zn) also has somedifferential properties. From
Proposition 10 on p. 125 of [4], we have:

Proposition 2 Let Z(G; z1, z2, . . . , zn) be Pólya’s cycle indicator. Then

z1
∂

∂z1
Z(G; z1, z2, . . . , zn) = 1

|G|
∑

x∈X

|Gx |Z(Gx ; z1, z2, . . . , zn), (3)

where the summation runs over all the set X.

The next statement (the Proposition 11 on p. 125 of [4]) symbolizes a converse
passage from Pólya’s theorem to the Cauchy–Frobenius lemma (see [3,4], also often
termed “Burnside’s lemma”), which was used to derive this theorem. Viz.:

Proposition 3 Let Z(G; z1, z2, . . . , zn) be Pólya’s cycle indicator. Then

|G\\X | = ∂

∂z1
Z(G; z1, z2, . . . , zn)

∣∣zi =1 (i∈[1,n]) . (4)

In a similar vein, we can cite (the Proposition 12 on p. 125 of [4]):

Proposition 4 Let Z(G; z1, z2, . . . , zn) be Pólya’s cycle indicator. Then

1

n

n∑

s=1

szs
∂

∂zs
Z(G; z1, z2, . . . , zn) = Z(G; z1, z2, . . . , zn). (5)

Now, fueled with relevant knowledge, we turn to derivation of new combinatorial
relationships.
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2 Main part

In this section, we demonstrate several refinements of propositions given above,
obtained for the casewhenG acts transitively on X .We beginwith our basic statement:

Proposition 5 Let G be a permutation group acting transitively on a nonempty finite
set X (|X | = n). Then

z1
∂

∂z1
Z(G; z1, z2, . . . , zn) = Z(Gx ; z1, z2, . . . zn). (6)

Proof Since G acts transitively on X , |G| = |X | · |Gx |, and the stabilizers of all
elements x ∈ X are isomorphic. Therefore, all summands on the R. H. S. of (3) give
the same contribution to the x-sum. So, this sum may be replaced by the product of

|X |
(
= |G|

|Gx |
)
and any of its summands. Whence the result follows. ��

Now, we can deduce also the following corollary:

Corollary 5.1 Let G be a permutation group acting transitively on a nonempty finite
set X (|X | = n). Then

|Gx\\X | =
{

∂

∂z1

[
z1

∂

∂z1
Z(G; z1, z2, . . . , zn)

]}∣∣∣∣
zi =1 (i∈[1,n])

. (7)

Proof Differentiate with respect to z1 the expressions on both sides of (6), and then
set zi = 1 (i ∈ [1, n]). By applying Proposition 5 [with transposing the R. H. S. and
L. H. S. of (6)], we immediately arrive at the proof. ��

The next corollary is slightly less evident:

Corollary 5.2 Let G be a permutation group acting transitively on a nonempty finite
set X (|X | = n). Then

|Gx\\X | = 1 +
[

∂2

∂z21
Z(G; z1, z2, . . . , zn)

]∣∣∣∣∣
zi =1 (i∈[1,n])

. (8)

Proof Obviously, the differentiation of the L. H. S. of (3) with respect to z1 gives

∂

∂z1

[
z1

∂

∂z1
Z(G; z1, z2, . . . , zn)

]
= ∂

∂z1
Z(G; z1, z2, . . . , zn)

+ z1
∂2

∂z12
Z(G; z1, z2, . . . , zn). (9)

By applying Proposition 3 to the first summand on the R. H. S. of (9) and taking
into account that for a transitive group G |G\\X | = 1, one can easily confirm the
occurrence of 1 on the R. H. S. of (8). By virtue of Proposition 3, the differentiation
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of the R. H. S. of (3) with respect to z1 and subsequent calculation of the obtained
expression under zi = 1 (i ∈ [1, n]) results in |Gx\\X |. Considering all these steps
together immediately leads to the proof. ��

The last corollary is due to Proposition 1 and Corollary 5.1, viz.:

Corollary 5.3 Let G be a permutation group acting transitively on a nonempty finite
set X (|X | = n). Then

1

|G|
∑

g∈G

|Xg|2 =
{

∂

∂z1

[
z1

∂

∂z1
Z(G; z1, z2, . . . , zn)

]}∣∣∣∣
zi =1 (i∈[1,n])

. (10)

Consider a simple example. Let Γ = (V ; E) (|V | = 6; |E | = 5) be a graph
obtained by attaching a pendant edge to the middle vertex of the path P5. This is a
hydrogen-suppressed molecular graph of methyl-3-pentane, whose set V of vertices
corresponds to carbon atoms, and set E of edges corresponds to C–C bonds; while
hydrogen atoms are not considered. There are four orbits of symmetry-equivalent
vertices in Γ : one is represented by two distal vertices, another by two their adjacent
neighbors, one by a central vertex, and one by a pendant vertex. Therefore, a molecule
of methyl-3-pentane may produce four different monoradicals, which may be used
as substituents to other molecules. Often, chemists use also substituted radicals, on
their own. For instance, we may consider, as substituents, halogens F,Cl,Br, I and
allow maximum one halogen atom to be attached to each carbon atom (if a halogen
substitutes for a hydrogen atom).We want to count the number of all such possibilities
to derive halogen-substituted radicals together with unsubstituted ones (neglecting
stereoisomers). First, consider a solution using the sumof cycle indicators enumerating
substitutional isomers of four different rooted subgraphs of Γ . We have the following
sum:

Y (V ; z1, z2) = 2(z61) + 2
[
(1/2)(z61 + z21z22)

]
= 3z61 + z21z22. (11)

The same solution can be obtained using the differentiation of the cycle indicator
counting substitutional isomers of the pristine molecule of methyl-3-pentane:

Y (V ; z1, z2) = z1
∂

∂z1
Z(V ; z1, z2) = z1

∂

∂z1

[
(1/2)(z61 + z21z22)

]
= 3z61 + z21z22,

(12)
which is due toProposition 2. In order to obtain a numeric result,wemake a substitution
z1 = z2 = 5 to Y (V ; z1, z2), where 5 reckons 4 sorts of halogens plus 1 unsubstituted
hydrogen; this gives: 3 × 56 + 52 × 52 = 47500. Although (12) here is a not so
advantageous over (11), in case of biggermolecular graphs, using the differentiation of
the basic cycle indicator Z(V ; z1, z2, . . . , zn) with respect to z1 may give an essential
economy in calculation of the generating function Y (V ; z1, z2, . . . , zn).

In a broader context, the differentiation of the generalized cycle indicators with
respect to various variables was applied by Rosenfeld and Klein in [5,6], who intro-
duced special hybrids of the cycle indicator and graph polynomials (such as the
matching, characteristic, permanental, etc. ones). They offered a technique which
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allows to enumerate substitutional isomers with restrictive mutual positions of lig-
ands. The book [8] contains numerous examples in which differential operators are
employed for obtaining cycle indicators and other generating functions. These exam-
plesmay tell the reader about practical problemswhich are solved using suchmethods.
The theory of species of structures [8] is a field where the differential operators are
very effectively used for performing various combinatorial tasks.
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